Recreational Vessel Traffic Model for British Columbia

Description:

Data on recreational boating are needed for marine spatial planning initiatives in British Columbia (BC). Vessel traffic data are typically obtained by analyzing automatic identification system (AIS) vessel tracking data, but recreational vessels are often omitted or underrepresented in AIS data because they are not required to carry AIS tracking devices. Transport Canada’s National Aerial Surveillance Program (NASP) conducted aerial surveys to collect information on recreational vessels along several sections of the BC coast between 2018 and 2022.

Recreational vessel sightings were modeled against predictor variables (e.g., distance to shore, water depth, distance to, and density of marinas) to predict the number of recreational vessels along coastal waters of BC.

The files included here are:

--A Geodatabase (‘Recreational_Boating_Data_Model’), which includes: (1) recreational vessel sightings data collected by NASP in BC and used in the recreational vessel traffic model (‘Recreational_Vessels_PointData_BC’); (2) aerial survey effort (or number of aerial surveys) raster dataset (‘surveyeffort’); and (3) a vector grid dataset (2.5 km resolution) containing the predicted number of recreational vessels per cell and predictor variables (‘Recreational_Boating_Model_Results_BC).

--Scripts folder which includes R Markdown file with R code to run the modelling analysis (‘Recreational_Boating_Model_R_Script’) and data used to run the code.

Methods:

Data on recreational vessels were collected by NASP during planned aerial surveys along pre-determined routes along the BC coast from 2018 to 2022. Data on non-AIS recreational vessels were collected using video cameras onboard the aircraft, and data on AIS recreational vessels using an AIS receiver also onboard the aircraft. Recreational boating predictors explored were: water depth, distance to shore, distance to marinas, density of marinas, latitude, and longitude. Recreational vessel traffic models were fitted using Generalized Linear Models (GLM) R packages and libraries used here include: AED (Roman Lustrik, 2021) and MASS (Venables, W. N., Ripley, 2002), pscl package (Zeileis, Kleiber, and Jackman, 2008) for zeroinfl() and hurdle() function. Final model was selected based on the Akaike’s information criterion (AIC) and the Bayes’ information criterion (BIC). An R Markdown file with code use to run this analysis is included in the data package in a folder called Script.

Spatial Predictive Model: The selected model, ZINB, consist of two parts: one with a binomial process that predicts the probability of encountering a recreational vessel, and a second part that predicts the number of recreational vessels via a count model. The closer to shore and to marinas, and the higher the density of marinas, the higher the predicted number of recreational vessels. The probability of encountering recreational vessels is driven by water depth and distance to shore. For more information on methodology, consult metadata pdf available with the Open Data record.

References:

Serra-Sogas, N. et al. 2021. Using aerial surveys to fill gaps in AIS vessel traffic data to inform threat assessments, vessel management and planning. Marine Policy 133: 104765. https://doi.org/10.1016/j.marpol.2021.104765

Data Sources:

Recreational vessel sightings and survey effort: Data collected by NASP and analyzed by Norma Serra to extract vessel information and survey effort (more information on how this data was analyzed see SerraSogas et al, 2021).

Bathymetry data for the whole BC coast and only waters within the Canadian EEZ was provided by DFO – Science (Selina Agbayani). The data layer was presented as a raster file of 100 meters resolution. Coastline dataset used to estimate distance to shore and to clip grid was provided by DFO – Science (Selina Agbayani), created by David Williams and Yuriko Hashimoto (DFO – Oceans).

Marinas dataset was provided by DFO – Science (Selina Agbayani), created by Josie Iacarella (DFO – Science). This dataset includes large and medium size marinas and fishing lodges. The data can be downloaded from here: Floating Structures in the Pacific Northwest - Open Government Portal (https://open.canada.ca/data/en/dataset/049770ef-6cb3-44ee-afc8-5d77d6200a12)

Uncertainties:

Model results are based on recreational vessels sighted by NASP and their related predictor variables and not always might reflect real-world vessel distributions. Any biases caused by the opportunistic nature of the NASP surveys were minimized by using survey effort as an offset variable.

Datasets available for download

Additional Info

Field Value
Last Updated October 22, 2024, 15:10 (UTC)
Created October 1, 2024, 07:52 (UTC)
Domain / Topic
Domain or topic of the dataset being cataloged.
Oceans
Format (CSV, XLS, TXT, PDF, etc)
File format of the dataset.
Dataset Size
Dataset size in megabytes.
Metadata Identifier
Metadata identifier – can be used as the unique identifier for catalogue entry
Published Date
Published date of the dataset.
2023-07-07
Time Period Data Span (start date)
Start date of the data in the dataset.
Time Period Data Span (end date)
End date of time data in the dataset.
GeoSpatial Area Data Span
A spatial region or named place the dataset covers.
Field Value
Access category
Type of access granted for the dataset (open, closed, service, etc).
Limits on use
Limits on use of data.
Location
Location of the dataset.
Data Service
Data service for accessing a dataset.
Owner
Owner of the dataset.
Fisheries and Oceans Canada | Pêches et Océans Canada
Contact Point
Who to contact regarding access?
Government of Canada; Fisheries and Oceans Canada; Science/Ecosystems and Ocean Science/Ocean Science Division, 250-363-3001, cathryn.murray@dfo-mpo.gc.ca
Publisher
Publisher of the dataset.
Publisher Email
Email of the publisher.
normaserra@gmail.com
Accessed At
Date the data and metadata was accessed.
Field Value
Identifier
Unique identifier for the dataset.
Language
Language(s) of the dataset
Link to dataset description
A URL to an external document describing the dataset.
Persistent Identifier
Data is identified by a persistent identifier.
Globally Unique Identifier
Data is identified by a persistent and globally unique identifier.
Contains data about individuals
Does the data hold data about individuals?
Contains data about identifiable individuals
Does the data hold identifiable data about individual?
Contains Indigenous Data
Does the data hold data about Indigenous communities?
Field Value
Source
Source of the dataset.
https://open.canada.ca/data/en/dataset/fed5f00f-7b17-4ac2-95d6-f1a73858dac0
Version notes
Version notes about the dataset.
Is version of another dataset
Link to dataset that it is a version of.
Other versions
Link to datasets that are versions of it.
Provenance Text
Provenance Text of the data.
Provenance URL
Provenance URL of the data.
Temporal resolution
Describes how granular the date/time data in the dataset is.
GeoSpatial resolution in meters
Describes how granular (in meters) geospatial data is in the dataset.
GeoSpatial resolution (in regions)
Describes how granular (in regions) geospatial data is in the dataset.
Field Value
Indigenous Community Permission
Who holds the Indigenous Community Permission. Who to contact regarding access to a dataset that has data about Indigenous communities.
Community Permission
Community permission (who gave permission).
The Indigenous communities the dataset is about
Indigenous communities from which data is derived.
Field Value
Number of data rows
If tabular dataset, total number of rows.
Number of data columns
If tabular dataset, total number of unique columns.
Number of data cells
If tabular dataset, total number of cells with data.
Number of data relations
If RDF dataset, total number of triples.
Number of entities
If RDF dataset, total number of entities.
Number of data properties
If RDF dataset, total number of unique properties used by the triples.
Data quality
Describes the quality of the data in the dataset.
Metric for data quality
A metric used to measure the quality of the data, such as missing values or invalid formats.

0 Comments

Please login or register to comment.