Dinoflagellate Communities in the Ports of Churchill (MB), Deception Bay (QC), Iqaluit (NU) and Milne Inlet (NU)

The data were collected during two research projects:

Development of community-based monitoring for aquatic invasive species in the Canadian Arctic - preparing for increased shipping related to resource development and climate change;

Diversity of pelagic primary producers in coastal habitats and the potential for harmful blooms in Eastern Canadian Arctic, with a focus near Iqaluit, Nunavut.

Funding was provided by Polar Knowledge Canada, Fisheries and Oceans Canada (Strategic Program for Ecosystem-based Research and Advice, Aquatic Invasive Species Program and Oceans Ocean Protection Plan) and the Nunavik Marine Region Wildlife Board.

These data are the abundance, richness and diversity of dinoflagellate communities in Canadian Arctic seaports to provide baseline data and to verify the presence of potential non-indigenous species and harmful taxa. These data can be used as a reference source for monitoring the introduction of potentially non-native species introduced into Arctic ports where shipping activities are high.

SAMPLING

Dinoflagellate samples were collected using a 20 μm (30 cm diameter) Nitex® plankton net during August in Churchill (MB) (2007 and 2015), in Deception Bay (QC ) (2016), in Iqaluit (NU) (2015 and 2019) and in Milne Inlet (2017). Samples were collected from 1 m of the surface to 1 m above the bottom.

PREPARATION : Samples were stored in 4% formaldehyde. Sample preparation and counting were performed using the Utermöhl method.

OBSERVATION : Samples were observed using an inverted microscope (NIKON Eclipse TE-2000-U) under a magnification of 200x.

ABUNDANCE : The calculation of the abundance of dinoflagellates (cell / liter) was carried out as follows: Number of cells X Volume of the bottle / Volume of the Utermöhl chamber / (pi X Radius^2 X Depth) X 1000

ENVIRONMENTAL VARIABLES

Environmental data were measured using a CTD and a Secchi disk. The time between sea ice melt and sampling was calculated by subtracting the sampling day from the breakup dates (ice concentration <1/10) which were extracted from the Canadian Ice Service records.

For further information, please consult the following paper: Dhifallah F, Rochon A, Simard N, McKindsey CW, Gosselin M, Howland KL. 2022. Dinoflagellate communities in high-risk Canadian Arctic ports. Estuarine, Coastal and Shelf Science 266:107731

Datasets available for download

Additional Info

Field Value
Last Updated October 22, 2024, 16:19 (UTC)
Created October 1, 2024, 07:53 (UTC)
Domain / Topic
Domain or topic of the dataset being cataloged.
Oceans
Description
A description of the dataset.

The data were collected during two research projects:

Development of community-based monitoring for aquatic invasive species in the Canadian Arctic - preparing for increased shipping related to resource development and climate change;

Diversity of pelagic primary producers in coastal habitats and the potential for harmful blooms in Eastern Canadian Arctic, with a focus near Iqaluit, Nunavut.

Funding was provided by Polar Knowledge Canada, Fisheries and Oceans Canada (Strategic Program for Ecosystem-based Research and Advice, Aquatic Invasive Species Program and Oceans Ocean Protection Plan) and the Nunavik Marine Region Wildlife Board.

These data are the abundance, richness and diversity of dinoflagellate communities in Canadian Arctic seaports to provide baseline data and to verify the presence of potential non-indigenous species and harmful taxa. These data can be used as a reference source for monitoring the introduction of potentially non-native species introduced into Arctic ports where shipping activities are high.

SAMPLING

Dinoflagellate samples were collected using a 20 μm (30 cm diameter) Nitex® plankton net during August in Churchill (MB) (2007 and 2015), in Deception Bay (QC ) (2016), in Iqaluit (NU) (2015 and 2019) and in Milne Inlet (2017). Samples were collected from 1 m of the surface to 1 m above the bottom.

PREPARATION : Samples were stored in 4% formaldehyde. Sample preparation and counting were performed using the Utermöhl method.

OBSERVATION : Samples were observed using an inverted microscope (NIKON Eclipse TE-2000-U) under a magnification of 200x.

ABUNDANCE : The calculation of the abundance of dinoflagellates (cell / liter) was carried out as follows: Number of cells X Volume of the bottle / Volume of the Utermöhl chamber / (pi X Radius^2 X Depth) X 1000

ENVIRONMENTAL VARIABLES

Environmental data were measured using a CTD and a Secchi disk. The time between sea ice melt and sampling was calculated by subtracting the sampling day from the breakup dates (ice concentration <1/10) which were extracted from the Canadian Ice Service records.

For further information, please consult the following paper: Dhifallah F, Rochon A, Simard N, McKindsey CW, Gosselin M, Howland KL. 2022. Dinoflagellate communities in high-risk Canadian Arctic ports. Estuarine, Coastal and Shelf Science 266:107731

Tags
Keywords/tags categorizing the dataset.
Format (CSV, XLS, TXT, PDF, etc)
File format of the dataset.
Dataset Size
Dataset size in megabytes.
Metadata Identifier
Metadata identifier – can be used as the unique identifier for catalogue entry
Published Date
Published date of the dataset.
2022-02-24
Time Period Data Span (start date)
Start date of the data in the dataset.
Time Period Data Span (end date)
End date of time data in the dataset.
GeoSpatial Area Data Span
A spatial region or named place the dataset covers.
Field Value
Access category
Type of access granted for the dataset (open, closed, service, etc).
License
License used to access the dataset.
Open Government Licence - Canada
Limits on use
Limits on use of data.
Location
Location of the dataset.
Data Service
Data service for accessing a dataset.
Owner
Owner of the dataset.
Fisheries and Oceans Canada | Pêches et Océans Canada
Contact Point
Who to contact regarding access?
Government of Canada; Fisheries and Oceans Canada, 204-984-4227, kimberly.howland@dfo-mpo.gc.ca
Contact Point Email
The email to contact regarding access?
Publisher
Publisher of the dataset.
Publisher Email
Email of the publisher.
kimberly.howland@dfo-mpo.gc.ca
Accessed At
Date the data and metadata was accessed.
Field Value
Identifier
Unique identifier for the dataset.
Language
Language(s) of the dataset
Link to dataset description
A URL to an external document describing the dataset.
Persistent Identifier
Data is identified by a persistent identifier.
Globally Unique Identifier
Data is identified by a persistent and globally unique identifier.
Contains data about individuals
Does the data hold data about individuals?
Contains data about identifiable individuals
Does the data hold identifiable data about individual?
Contains Indigenous Data
Does the data hold data about Indigenous communities?
Field Value
Source
Source of the dataset.
https://open.canada.ca/data/en/dataset/33c2259f-c9d4-484f-8666-d52ee995cc2a
Version notes
Version notes about the dataset.
Is version of another dataset
Link to dataset that it is a version of.
Other versions
Link to datasets that are versions of it.
Provenance Text
Provenance Text of the data.
Provenance URL
Provenance URL of the data.
Temporal resolution
Describes how granular the date/time data in the dataset is.
GeoSpatial resolution in meters
Describes how granular (in meters) geospatial data is in the dataset.
GeoSpatial resolution (in regions)
Describes how granular (in regions) geospatial data is in the dataset.
Field Value
Indigenous Community Permission
Who holds the Indigenous Community Permission. Who to contact regarding access to a dataset that has data about Indigenous communities.
Community Permission
Community permission (who gave permission).
The Indigenous communities the dataset is about
Indigenous communities from which data is derived.
Field Value
Number of data rows
If tabular dataset, total number of rows.
Number of data columns
If tabular dataset, total number of unique columns.
Number of data cells
If tabular dataset, total number of cells with data.
Number of data relations
If RDF dataset, total number of triples.
Number of entities
If RDF dataset, total number of entities.
Number of data properties
If RDF dataset, total number of unique properties used by the triples.
Data quality
Describes the quality of the data in the dataset.
Metric for data quality
A metric used to measure the quality of the data, such as missing values or invalid formats.

0 Comments

Please login or register to comment.